
A brief introduction to the use of conda on the
Trantor cluster
Conda is both an environment management system (similarly to “virtualenv”) and a package
management system (similarly to “pip”). While it focuses on Python, it can also be used to
install libraries for other programming languages as well as software binaries.

Once created, conda environments can be used both on head and compute nodes. It
is important to note, however, that environment creation and manipulation is only
possible on the head nodes.

Initializing your shell for conda
Before using conda, it is necessary to properly configure your shell with the command:

/cluster/shared/software/miniconda3/bin/conda init

For changes to take effect, you have to logout and login again. After logging in, you’ll see the
prefix (base) at the left of the shell prompt (e.g. (base) [user@hostname ~]$). The name
(or the path) inside the parentheses shows the currently active environment.

Preconfigured environments
At the time of writing, the following preconfigured environments are available on the cluster:

“base”
Path: /cluster/shared/software/miniconda3/
Description: Base python 3 environment.

“callisto”
Path: /cluster/shared/software/conda_envs/callisto/
Description:
A Python environment for scientific computing. Includes the following packages:

● Python 3.8
● IPython
● Numpy
● Pandas
● Scipy
● Scikit-learn
● Seaborn
● Matplotlib

“cosmo3.8”
Path: /cluster/shared/software/conda_envs/cosmo3.8/
Description: Python 3.8 environment containing specific packages for the needs of the
Cosmology group.

Activating and deactivating a conda environment
You can activate an environment by means of the following command:

conda activate <environment name or path>

This command requires as argument the short name or the full path of the environment.
Please note that the short name can only be used for “base” or for your custom
environments (discussed in the following). In the case of preconfigured environments (such
as “callisto”), you have to provide their full path.

Examples:
conda activate base
conda activate my_custom_env
conda activate /cluster/shared/software/conda_envs/callisto

After that, you can use the conda list command to get a detailed list of all the packages
installed in the currently active environment.

Finally, the environment can be deactivated with conda deactivate.

Activating a conda environment in PBS Jobs
This section explains how to set up the job script in order to use conda environments in your
(non-interactive) PBS jobs.

Note

If you are not familiar with PBS, be sure to read the following introductory guide to PBS
available on the HPC Center’s website:
https://hpccenter.sns.it/page/wiki/pages/Submitting_Inspecting_and_Cancelling_PBS_Job
s.html

To activate a conda environment within a PBS job, executing conda activate as part of the
job script is (usually) not enough!
In the case of bash scripts, this is due to the fact that conda init inserts the required
configuration within your personal .bashrc file. However, regular jobs run in non-interactive
shells, which don't process .bashrc at startup. As a consequence, before activating the
desired environment, you need to set up your shell for conda by means of the following
command:

eval "$(/cluster/shared/software/miniconda3/bin/conda shell.bash hook)"

https://hpccenter.sns.it/page/wiki/pages/Submitting_Inspecting_and_Cancelling_PBS_Jobs.html
https://hpccenter.sns.it/page/wiki/pages/Submitting_Inspecting_and_Cancelling_PBS_Jobs.html

Here is an example:

#!/bin/bash
#PBS -l select=1:ncpus=2
#PBS -q q07helicon
#PBS -N my_job
eval "$(/cluster/shared/software/miniconda3/bin/conda shell.bash hook)"
conda activate /cluster/shared/software/conda_envs/callisto
python3 my_python_script.py
...

User-defined environments
Although the preconfigured environments can’t be modified by regular users, you can create
custom virtual environments according to your specific needs. Such environments will be
stored in your home directory and will be available both on head and compute nodes.

The following subsections describe the steps required for creating, modifying and removing
a custom virtual environment with conda.

[Optional] Setting conda-forge as primary channel
It is recommended to set “ conda-forge ” as the primary channel for searching and
downloading packages, since it provides considerably more updated software with respect to
the default channels. To this end, follow these steps:

1. Change the working directory to your home:

cd ~

2. Disable any previously activated environment (if any):

conda deactivate

You may need to run this command multiple times, until the prefix at the left of the
shell prompt disappears.

3. Add conda-forge to the top of the channels list:

conda config --add channels conda-forge
conda config --set channel_priority strict

Notes

● This procedure needs to be executed only once. There is no need to repeat it
every time you create or modify an environment.

● Although it is possible to rely on conda-forge only for selected packages (e.g. by
using the --channel option of the the conda install command), this may lead to
incompatibilities between the packages downloaded from conda-forge and the

ones retrieved from the default channels.

● Carefully read the “tips and tricks” section of the conda-forge’s documentation:
https://conda-forge.org/docs/user/tipsandtricks.html

● Setting conda-forge as the primary channel is mandatory for creating R
environments that can be used within JupyterLab!

Creating a custom Python-based virtual environment

1. Change the working directory to your home:

cd ~

2. Create the new conda environment:

conda create -n env_name python= x.y package_2 package_3 … package_N

Replace env_name with the name of the new environment, and x.y with the desired
Python version. List at the end of the command any additional packages you want to
install (e.g. numpy, matplotlib etc.).

3. Finally, remember to activate your environment before using it:

conda activate env_name

Tip

The following Web page allows to search among the available packages, provided by both
official and third-party channels: https://anaconda.org/anaconda/repo

Creating a custom R-based virtual environment

1. Change the working directory to your home:

cd ~

2. Create the new conda environment:

conda create -n env_name r-base r-essentials package_2 … package_N

Replace env_name with the name of the new environment. List at the end of the
command any additional packages you want to install.

3. Finally, remember to activate your environment before using it:

conda activate env_name

https://conda-forge.org/docs/user/tipsandtricks.html
https://anaconda.org/anaconda/repo

Tip

In the case of R libraries, package names usually start with the “r-” prefix.

Modifying a custom virtual environment

1. Change the working directory to your home:

cd ~

2. Activate the environment you want to modify (if not already active):

conda activate env_name

3. Install or remove packages according to your needs :

conda install package_1 package_2 … package_N

or

conda remove package_1 package_2 … package_N

Note

In order to avoid dependency conflicts, you should install as many packages as possible in
one go, preferably when creating the environment. To this end, you may define the
required packages in a yml file and pass it as an input of the conda create command:
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-environments.ht
ml#creating-an-environment-from-an-environment-yml-file

Removing a custom virtual environment

1. Change the working directory to your home:

cd ~

2. Disable any previously activated environment (if any):

conda deactivate

You may need to run this command multiple times, until the prefix at the left of the
shell prompt disappears.

3. Delete the environment:

conda remove --name env_name --all

4. Print the list of the local conda environments to confirm the removal:

conda env list

https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-environments.html#creating-an-environment-from-an-environment-yml-file

Using pip in a conda environment

Issues may arise when mixing pip and conda to manage packages, since each of them may
be not aware of the changes made by the other. If you really need pip in a conda
environment, you should use pip only after installing as many packages as possible with
conda. After that, you should avoid using conda to apply further changes to the environment.
For further details, please read the following section of the conda user’s guide:
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-environments.html#
using-pip-in-an-environment

Further readings

Conda documentation
https://docs.conda.io/projects/conda/en/latest/

Conda channels and their management:
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-channels.html

Additional recommendations on using pip in a conda environment:
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#
using-pip-in-an-environment

Cheat-sheet summarizing the main conda commands:
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html

Conda-forge documentation
https://conda-forge.org/docs/index.html

In particular, carefully read the “tips and tricks” section:
https://conda-forge.org/docs/user/tipsandtricks.html

https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-environments.html#using-pip-in-an-environment
https://docs.conda.io/projects/conda/en/stable/user-guide/tasks/manage-environments.html#using-pip-in-an-environment
https://docs.conda.io/projects/conda/en/latest/
https://docs.conda.io/projects/conda/en/latest/user-guide/concepts/channels.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-channels.html
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#using-pip-in-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/manage-environments.html#using-pip-in-an-environment
https://docs.conda.io/projects/conda/en/latest/user-guide/cheatsheet.html
https://conda-forge.org/docs/index.html
https://conda-forge.org/docs/user/tipsandtricks.html

